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A two-dimensional direct numerical simulation of the natural convection flow of air 
in a differentially heated square cavity was performed for a Rayleigh number of lolo. 
The simulation was commenced from isothermal and quiescent conditions and was 
allowed to proceed to a statistical steady state. Two-dimensional turbulence resulted 
without the introduction of random forcing. Good agreement of mean quantities of 
the statistically steady flow is obtained with available experimental results. In 
addition, the previously proposed (George & Capp 1979) -$ and +f temperature and 
velocity variations in the buoyant sublayer are confirmed. Other statistics of the flow 
are consistent with available experimental data. Selected frames from a movie 
generated from the computational results show very clearly turbulence production 
via the sequence from initial instability, proceeding through transition, and 
eventually reaching statistical steady state. Prominent large-scale structures are 
seen to persist a t  steady state. 

1. Introduction 
One of the fundamental flow configurations for heat transfer and fluid mechanics 

studies is the turbulent natural convection flow within a differentially heated vertical 
cavity. This configuration is relevant to many engineering applications, and is of 
considerable practical interest. Applications include reactor insulation, cooling of 
radioactive waste containers, ventilation of rooms, solar energy collection, and 
others. While there has been substantial work devoted to the study of turbulent 
natural convection in the Rayleigh-BBnard problem where the gravitational vector 
is parallel to an imposed thermal gradient (e.g. Lipps 1976; Grotzbach 1982), 
relatively minor attention has been given to the case where gravity is orthogonal to 
the gradient. There are only a few publications on this subject and the published 
experimental data are insufficient to fully characterize the mechanisms responsible 
for momentum and heat transport in the thermal layers. In  contrast, theoretical and 
experimental studies for the same problem but in the laminar regime are abundant. 
For example, see Elder (19654 Cormack, Leal & Imberger (1974), de Vahl Davis & 
Jones (1983), and Chenoweth & Paolucci (1986) (referred to as CP henceforth), and 
references therein. 

In  a vertical layer that is bounded by vertical isothermal surfaces having different 
temperatures and thermally insulated a t  the ends, a circulatory flow is set up, 
ascending against the hot surface and descending at the cold surface. It is well known 
(from both experimental and numerical simulations in the laminar boundary layer 
regime, and experimental in the turbulent regime) that, at steady state, the 
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temperature away from the boundary layers increases linearly over a large part of 
the height of the layer (Eckert & Carlson 1961; Elder 19653; Kutateladze, 
Kirdyashkin & Ivakin 19723; CP). Consequently, the vertical cavity is also 
important from the point of view of investigating the structure of a turbulent free- 
convection boundary layer in the presence of stable stratification. As will be shown, 
the structure of the boundary layer is related to that of an isolated heated or cooled 
vertical flat plate. 

The flow in the cavity passes through several stages as the fluid flows along the 
active vertical walls. The flow near the entry corners of the boundary layers is 
initially laminar. It then passes through a transition region, and finally becomes 
turbulent. When a statistical steady state obtains, the space between the vertical 
boundary layers is filled by a virtually immobile stably stratified fluid executing low- 
frequency, low-velocity oscillations. 

One of the earliest experimental studies of this problem was performed by Mull & 
Reiher and has been discussed by Jakob (1949) and Batchelor (1954). Subsequently 
Mordchelles-Regnier & Kaplan ( 1963) have obtained some measurements and 
visualizations up to Rayleigh numbers of order 10". These early works were followed 
by the classic experimental work of Elder (19653), who measured primarily the 
temperature and velocity in the cavity using several fluids of high Prandtl number. 
He concluded that the occurrence of the turbulent wall layers in the cavity is 
independent of the aspect ratio and occurs in a similar manner to that on an isolated 
vertical plate. More recently MacGregor & Emery (1969) experimentally obtained 
heat transfer data for different Prandtl numbers and aspect ratios; Kutateladze et al. 
(19723, 1977, 1978) measured heat transfer, velocity and temperature means, their 
fluctuations, as well as the probability density distribution of temperature 
fluctuations ; Cowan, Lovegrove & Quarini (1982) obtained overall and local heat 
transfer data for different aspect ratios; Kirdyashkin et al. (1983), and Kirdyashkin 
& Semenov (1984) measured the temperature means, fluctuations and their frequency 
spectra, the temperature kurtosis and skewness parameters, as well as other 
turbulence quantities ; and Giel & Schmidt (1986) obtained velocity and temperature 
means and fluctuations, as well as frequency spectra of temperature fluctuations. 

In the present work we consider the nonlinear physics of turbulence numerically. 
More specifically, we perform a direct numerical simulation of the free convective flow 
in a vertical cavity across which a uniform temperature difference is maintained. 
Although the initial conditions used herein are non-random, owing to strong 
buoyancy the flow breaks up into an apparently random one. In this work a flow 
which exhibits temporal as well as spatial randomness is identified as being 
turbulent. 

The flow is assumed to be two-dimensional. Although physical flows are usually 
three-dimensional, two-dimensional turbulence is often considered as a first 
approximation in many cases (e.g. turbulent flows submitted to a stable 
stratification). Furthermore, it appears from numerous experiments dealing with this 
problem (e.g. Giel & Schmidt 1986), and the related problem of natural convection 
from a heated vertical plate (e.g. Lochet, Lemonnier & Doan-Kim-Son 1983), that 
three-dimensionality in this class of flows has a very small influence if the depth 
dimension is not too small. In this connection, it is noted that the inertial subrange 
of two-dimensional turbulence is quite different from that in three-dimensions 
(Kraichnan 1967; Lilly 1969). In particular, in inviscid isothermal flow the cascade 
of energy in two dimensions is mainly toward low wavenumber in the inertial 
range, and becomes weak or non-existent a t  higher wavenumbers where only 
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vorticity variance or enstrophy is cascaded in the usual sense in the inertial 
range. 

Turbulence consists of chaotic motion in space as well as in time, and often 
persistent organized motions as well, a t  range of scales that increase rapidly with 
Reynolds number. Over two decades ago Corrsin (1961) demonstrated that the direct 
numerical simulation of high-Reynolds-number flows places an overwhelming 
demand on computer memory and speed. The convective terms of the equations 
produce a range of scales limited by molecular diffusion, so that with sufficiently low 
Reynolds number the entire range can be numerically resolved and no modification 
of the governing equations is required. When computer capacity does not allow 
complete resolution and the equations are not modified to take this into account, the 
computed values for higher Reynolds numbers may have no relation to fluid physics. 
The basic problem is accuracy in calculating the small scale of some of the turbulent 
eddies. As the turbulence strength and/or time increases, smaller eddies are 
generated. No matter how small the numerical mesh size, one can always choose a 
Reynolds number and/or time large enough that the results will be quantitatively 
inaccurate. One way of improving the accuracy is to resolve all the eddies containing 
almost all the energy. By assuming that the flow is two-dimensional this demand is 
alleviated somewhat. The numerical simulation is still difficult since the flow is 
totally bounded by solid walls and a t  the same time is buoyantly driven. The 
complication due to the solid walls is handled by the use of an adaptive non-uniform 
grid scheme which allows sufficient resolution next to the walls. The complication 
due to buoyancy is not just cosmetic, since the actual equations solved do not embody 
the usual Oberbeck-Boussinesq approximation, and hence are capable of treating 
more general problems, even though in the present work density variations are 
restricted to be very small so as to be well within the Oberbeck-Boussinesq limit. 

The study of the time-dependent structure of turbulence and determination of the 
average characteristics of the flow and heat transfer using numerical modelling, 
omitting the usual averaging, involves not only solution of difficult numerical 
problems, but also creation of special processing systems and methods of analysis. 
The use of a graphics post-processor which allows the examination of the flow 
structure during the transition from laminar to turbulent flow, as well as the fine 
structure of the wall layers, was found to be indispensable in this work. The use of 
stored simulation results allowed rapid interactive display of results, and a t  the same 
time placed fewer constraints on the questions that could be answered regarding the 
flow. 

The purpose of this paper is two-fold. First, to present results which should be 
helpful in constructing simplified turbulence models for natural convection flows. 
Secondly, to show that the prevailing theories of heat and mass transfer which 
assume relationships for friction and heat transfer similar to those in forced 
boundary-layer flow, are not applicable to natural convection turbulence. This paper 
is presented in four sections. Section 2 presents the governing equations and details 
the formulation of the numerical problem. Results of the simulation and comparisons 
with relevant experimental data are presented in $3. Finally we conclude in $4 with 
a summary of the major results. 
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2. Formulation of the numerical problem 
2.1. Equations, and boundary and i n i t i a l  conditions 

Consider a two-dimensional rectangular cavity of width L and height H filled with 
air. The air is initially quiescent a t  a uniform temperature T, and pressure p,. The 
walls of the vessel are initially a t  the same temperature T,. A t  times larger than zero, 
the left and right walls are maintained a t  temperatures of and T,, respectively, 
where Th > T,. The top and bottom walls are insulated. We non-dimensionalize the 
problem by reference quantities for length, velocity, and temperature using the 
cavity width L ,  the thermal diffusion speed a/L, and the mean of the wall 
temperatures T, = t(Th + T,), respectively. 

The problem evolves in time t and can be described in two-dimensions in terms of 
the velocity components vt = (u , v )  in the xt = (x, y )  directions, the density p ,  
temperature T, and pressure p .  The governing equations are statements of 
conservation of mass, momentum, and energy, with the addition of the ideal gas law. 
These equations, valid under a small-Mach-number approximation, but allowing for 
arbitrary density variations, have been derived by Paolucci (1982), and have been 
used to investigate the solutions of related problems in the laminar regime in CP, and 
in the transition regime in Paolucci & Chenoweth (1989) (hereafter referred to as PC). 
They are given as follows: 

aP aPv* -+-- = 0, 
at ax* 

p = p T ,  

where 17 = p( l ) / (yMa2)  is a reduced pressure which accounts for the hydrostatic and 
dynamic effects, p(l)  is the second term in the Mach-number expansion of p and is 
O(Ma2), y is the ratio of specific heats, n, is the unit vector in the direction of gravity, 
ril is the viscous stress tensor given by 

8, is the Kronecker delta function, and r = ( y -  l ) / y  is a measure of the resilience of 
the fluid. The thermal conductivity, viscosity, and specific heat a t  constant pressure 
are functions of the thermodynamic variables. Note that the Mach number only 
serves as a scaling for the dynamic and hydrostatic components of pressure. 

The spatially uniform pressure p = p(”(t) appearing in the energy equation and the 
equation of state, which represents the first term in the expansion of p ,  accounts for 
the change of the static pressure with time. The separation of the pressure 
components, holding under the small-Mach-number approximation, is the essence of 
the acoustic wave ‘filtering’; however, this splitting introduces p as an extra 
unknown. It can be shown that the equation for p is obtained by a global mass 
conservation statement and the use of boundary conditions. 
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y = A  

u = v = O  
T =  1 + e  

r = o  

u = v = o  

T = l  

4 = (0, - 1) 

u = v = o  
T =  1-6 

x = l  

The initial and boundary conditions used, expressed in dimensionless form, are 

I aT aT - ( x ,  0, t )  = - (32, A ,  t )  = 0. 
% a?4 

It is noted that in the Boussinesq limit e-+O,p+ 1, and the relevant independent 
dimensionless parameters appearing in the problem are the Rayleigh number, the 
Prandtl number, and the aspect ratio: 

V H 
, Pr = -, A = -. 

L 
p ATgL3 Ra = 

va a 

In the above definitions v and a are the kinematic viscosity and thermal diffusivity 
respectively, ,4 is the coefficient of thermal expansion, g is the magnitude of the 
gravitational field, and AT = Th- T,. 

The problem is illustrated in figure 1. In this paper we use E = AT/2To = 11566, 
A = 1, Pr = 0.71, and Ra = lolo. Because of the centro-symmetry property of the 
Oberbeck-Boussinesq equations for this problem, had those equations been used to 
obtain the solution, a laminar flow would have resulted even at this high Rayleigh 
number (representing an unstable branch in a stability diagram). To break the 
symmetry, the introduction of a non-physical perturbation with an arbitrary 
wavelength would have been necessary, hence effecting the transient path to the 
ultimate turbulent regime. In contrast, the set of equations used do not possess this 
symmetry property, and hence mathematically unstable branches cannot be 
obtained. Furthermore it is believed that the path to turbulence should more closely 
follow that of the real physical problem since property variations are treated 
accurately and consistently. 
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2.2.  Finite-difference equations 
Numerical implementation of the governing equations consists of four main issues : 
numerical approximation of spatial derivatives, a time advancement algorithm, 
initial and boundary conditions, and computer implementation and organization. In  
each category there are options available, and the choice of the overall algorithm 
depends on the problem under consideration, the cost, and the computer architecture. 
I will touch on each of these subjects. 

There are several ways to formally deduce a finite-difference scheme from the basic 
equations. For a review of the methods which have become important for direct 
numerical simulation, the reader is referred to the papers of Love (1979) and 
Schumann, Grotzbach & Kleiser (1980). The numerical scheme employed is based 
on explicit finite differences using a staggered mesh. To derive the finite-difference 
equations one starts by overlaying a staggered grid network over the region of 
interest. The grids are allowed to be non-uniform and mutually orthogonal in 
Cartesian coordinates. The differential equations are averaged on a local two- 
dimensional grid volume to obtain their finite-difference form. This procedure, 
without the additional complexity of non-uniform grids, is described by Grotzbach 
(1982), where the reader is referred for more details. 

To accurately describe boundary heat fluxes in unsteady boundary layers with a 
minimum of node points, especially a t  very small times, i t  is necessary to use a non- 
uniform coordinate mesh with dynamic rezoning. The need for non-uniform grids 
arises since the smallest grids necessary near the boundaries can sometimes be orders 
of magnitude smaller than needed well outside the boundary layers. The approach 
used is described in detail in PC. Briefly, the non-uniform grid is transformed to a 
uniform one by an orthogonal tranformation El, = &(xk) which also maps the 
problem to the computational domain - 1 < C k < 1, where xk = (2, y) and Ek = ( 5 , ~ ) .  
After specification of a function describing the grid variation in the xi-plane, all that 
is left to completely specify the non-uniform grid are the parameters S, which are 
used to control the grid reduction in the boundary layers as functions of time. The 
parameters Si measure the ratios of the smallest to largest grids. The way they are 
controlled is based on boundary flux error. For example, S, is discretized as S,(t,) = 
S:, and an initial grid reduction value is specified, e.g. Si = (note that S, = 1 
gives a uniform grid). At the location of maximum wall heat flux, the numerical value 
of (aT/ay)" is evaluated using both linear and quadratic interpolations L: and Q:, 
respectively. If we let ~ y "  = 11 -L:/Q:l, and ~r be an error control parameter, then the 
grids can be controlled as follows: let 

S,n+l = SZ[1 +H;(sr-s;)] ,  

8; < s;+1 < 1. 

where H ,  = L,  tanh-lL,, and L, = (1 -S:)i, then 

(2.8) 

It was found by Chenoweth & Paolucci (1981) that if s r  is chosen within the range 
0.03 < s r  < 0.10, then one can be assured that several grid points remain in the 
boundary layer, but no more than necessary to obtain the accuracy desired. For the 
present problem, since we have two coordinate directions, the above transformation 
is used in each coordinate with S: =t= Si in general. 

Time advancement may be done either explicitly or implicitly. The first-order 
explicit Euler scheme was chosen since i t  was easy to implement, has a much lower 
cost per time step, and requires much less computer memory allocation than an 
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equivalent implicit implementation. The stability of the scheme was found to be 
governed by the local grid PBclet number near the vertical walls. 

The finite-difference equations are solved on the adaptive staggered grid system 
using an explicit predictor-corrector scheme with forward differences for time 
derivatives and central differences for spatial derivatives, with a truncation error 
O(At,  A[:). The computational procedure is described by CP who solved the related 
problem in the laminar regime. The reader is referred to that work for the details. The 
only modification to that procedure is the computation of a new grid before the time 
is incremented. 

Finite-difference approximations of the nonlinear terms contain aliasing errors. 
These errors are usually less severe than corresponding ones obtained using spectral 
methods owing to the damping at  high wavenumbers of the difference approximation. 
These errors usually increase with the order of accuracy of difference schemes. Lilly 
(1965) demonstrated that the staggered-mesh difference scheme used above preserves 
invariance properties of the original equations such as conservation of mass, 
momentum, energy, and circulation. Aliasing errors can violate these invariance 
properties and lead to nonlinear numerical instabilities. Thus it is felt that using a 
staggered mesh with second-order spatial accuracy, a time integration using a first- 
order explicit Euler scheme, accompanied by grids and time steps small enough to 
resolve the small scales would give us a sufficiently accurate solution. 

2.3. Resolution requirements 
In natural convection problems, it is well known that turbulence can be sustained at 
relatively low Reynolds numbers. Furthermore, as already mentioned, the two- 
dimensional assumption appears to be justified for the problem being considered. 
Both of these facts, combined with a judicious grid distribution, make a direct 
simulation possible. It remains now to choose appropriate grid sizes to resolve the 
complete flow. Since any effects due to eddies smaller than the grid size are neglected, 
as pointed out by Grotzbach (1983) we must have a grid distribution that allows the 
resolution of steep gradients in the velocity and temperature fields near the walls, 
and mean grid widths smaller than the smallest relevant turbulence elements. 
Quantifying these qualitative criteria can be a difficult problem. 

For high Rayleigh numbers, the thickness of the boundary layer is small compared 
with the dimensions of the cavity. Thus, it is expected that in the vicinity of an active 
wall, the boundary layer should be similar to that arising from an isolated vertical 
plate. Since no wall model is provided in the computer simulation, then it is necessary 
to resolve the conductive sublayer. It is reasonable to assume that the thickness of 
the thermoviscous sublayer should be of the same order or larger than the conductive 
sublayer since the flow is driven by thermal effects. 

Using a scaling analysis and experimental results of Smith (1972), George & Capp 
(1979) show that the conductive sublayer on a warm isolated vertical plate immersed 
in an isothermal environment extends to 

z x 1.7(PrRam)-i. (2.9) 

The subscript ‘m ’ denotes that the Rayleigh number is based on ATm = T, - T,, 
where T, is the temperature of the plate, and T, is the temperature outside the 
boundary layer (T, = T, for an isolated plate). The above result was also recently 
confirmed by Siebers, Moffatt & Schwind (1985) but with a constant of approximately 
3. In the case of the cavity ATm = +AT at early time, and it is approximately a linear 
function of the vertical coordinate when the flow becomes stationary (e.g. 
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Kutateladze et al. 1977 ; Cowan et al. 1982). In  the Oberbeck-Boussinesy limit this 
linear function has a non-dimensional slope of approximately 0.36. 

As noted by Grotzbach (1983), in order to resolve very small eddies close to the 
dissipation scale, for Pr < 1 we must have A < n ( v 3 / ~ ) i / L ,  where A = ( A X A Y ) ~  is the 
mean grid size, and E is the rate of energy dissipation per unit mass. Since most of the 
energy is dissipated on scales larger than A ,  resolution of these scales would seem to 
be sufficient. If it  is assumed that E is constant and equal to the production of energy, 
then E = @ / L ,  where L is the mean turbulent kinetic energy. Now k can be estimated 
by making use of equations for the mean turbulence kinetic energy and mean- 
squared temperature fluctuations (see (3.28) and (3.29)) and assuming local 
equilibrium where production is balanced by dissipation. Alternatively, an upper 
bound for k can be. obtained by using some fraction of the free buoyancy speed 
(Bg ATL);. For large-Rayleigh-number laminar flow in the boundary-layer regime, the 
maximum speed is approximately of the free buoyancy speed a t  steady state (see 
CP). From the above considerations based on Kolmogorov scaling, in order to  resolve 
the microscopic lengthscale, we must have approximately 

A < n(16Pr/Ra):. (2.10) 

In  the centre of the cavity the mean speed is approximately zero, so that larger grid 
sizes can be used. In  addition, the above estimate is expected to be somewhat smaller 
than necessary since it is based on an estimate of the maximum speed in laminar flow. 

Usin similar arguments, an estimate of the dimensionless Kolmogorov timescale 
na(v/c)~/Lz required to resolve the microscopic motion can be provided. The result 
is that we must have approximately 

5 

At < 8n Pr-a Raf . (2.11) 

I n  order to quantify the resolution requirements for our particular problem, values 
of parameters specified in the actual computation must be used. For Pr = 0.71 and 
Ra = lolo, (2.9)-(2.11) require Ax < 1.11 x lop3 near the active walls in order to 
resolve the conductive sublayer, a mean grid size of the order A < 1.39 x and an 
integration time step of the order At < 8.66 x lo-' to  resolve the microscopic length- 
and timescales, respectively, in the boundary layers. 

The computational domain was discretized using 121 x 121 control volumes. The 
following values of grid-control parameters were used a t  the initial time : e r  = €7 = 
0.03, S: = Si = 0.01. Throughout the computation, s," and 8: are held fixed, while 
S: and S i  vary according to the demands of the solution. When statistical steady 
state was achieved S: and S; had the values of 0.0158 and 0.0203, respectively, 
and the corresponding grid distribution is shown in figure 2. At the initial time 
Axm,/Axmin = Aymax/Aymin x 195, and 1.27 x lop4 < A < 2.48 x A being small- 
est in the corners of the cavity, and largest in the centre. In  regions of high gradients 
near the active walls a t  y = &4, we have A x 1.78 x The 
respective values a t  steady state are Axmax/Axmin z 124, Aymax/Aymin M 96, 
2.06 x < d < 2.25 x and A x 2.02 x lop3 and Ax x 1.86 x near the 
walls a t  y = $4. Note that although the mean grid width does not change much 
throughout the entire calculation, the values of Ax and Ay change substantially as 
shown by the change in grid ratios. The time step changed somewhat during the 
computation depending on the demands of the solution. The average value was found 
to be At,,, = 2.73 x 

As is readily apparent (and not coincidentally) the conductive sublayer was well 
resolved. In  fact, we have 6 grid points within each sublayer at y = $4 when the flow 

and Ax x 1.27 x 
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FIGURE 2. Grid distribution a t  statistical steady state: ( a )  complete cavity, (a) detail of lower 
left corner showing 1/400th of the total area. 

is stationary. Moreover, the adaptive grid algorithm demanded approximately 10 
points inside the vertical velocity maximum and a total of approximately 30 points 
within each boundary layer at stationarity. Since the resulting mean grid width 
within the boundary layer and near the corners of the cavity, and the integration 
time step are of the same order or smaller than the estimated Kolmogorov scale 
requirements, it is felt that the flow should be resolved down to the microscales. Note 
that the mean grid width in the core of the cavity is approximately one order of 
magnitude larger than the microscopic lengthscale. It is felt that this fact should not 
impair the resolution since in the core of the cavity energy production should be very 
much smaller than in the boundary layers or corner regions. 

More than 3.5 x 106 time steps were computed. The simulation encompassed a total 
time t = 9.55 x (measured on a diffusion timescale). Detailed statistics were 
obtained from more than lo4 samples of velocity and temperature profiles on the 
mid-sections of the cavity obtained during the time interval 6.81 x < t 6 
9.55 x lop4. The sampling period was At = 2.5 x lo-*. 

The calculations were performed over a period of several months on a CRAY-1S 
computer. The computer time required to obtain a statistical steady state was 
approximately 85 hours. The calculations were carried out for an additional 70 hours 
to obtain a sufficient number of samples for meaningful statistics at the lower 
frequencies. The determination of the time at  which stationarity was achieved was 
obtained from inspection of the temperature and velocity fields a t  different times, 
hence it is very subjective. However, statistics obtained using one-half and one- 
quarter of the sample size differed very little from that obtained from the full sample 
hence verifying the assumption of stationarity. Subsequently, all statistical data 
reported were obtained from the full sample of over lo4 data points. 

2.4. Graphics post-processing 
A computational fluid dynamics solution of the Navier-Stokes equations results in 
values of the dependent variables at discrete points in the field. within the geometry 
of interest. Not including the special data required for statistics, and because of the 
unsteady nature of the problem, 156 million words of data were generated when 
approximately 2000 time steps were saved. Use of interactive graphics provided the 
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only practical means of analysing such an enormous data set, and a graphics post- 
processor, developed specifically for this computer program, proved invaluable in 
visualizing and understanding the resulting solutions of the calculations. The 
advantage of interactivity is that one can discover information that might not be 
anticipated. 

Interactive graphics are used to interpret the computed flow solution by looking 
at  different regions within the cavity and plotting different flow quantities. 
Quantities describing the flow field are characterized by magnitude and direction, 
and a variety of displays are used to extract this information. Scalar quantities such 
as temperature are displayed by sectional profiles, isoline levels, and colour shading 
using scan-line rendering. Vector quantities such as velocity are illustrated by 
displaying arrows, where both magnitude and direction are represented. With the use 
of velocity vectors the existence of flow separation can be easily seen. It is noted that 
in displaying the velocity fields only vectors on an interpolated matrix of 2 5 x 2 5  
evenly spaced grids are shown for clarity of presentation, even though the number 
of computed values is obviously much greater. Because of this, the ability to zoom 
in on a field display was found to be extremely important. 

By generating a movie, the additional dimension of time can be displayed. For 
unsteady flow computations the demonstration of the physics involved can only be 
done using motion. The flow is in motion, and to present it through a movie is only 
natural. As a result, many of the time-dependent phenomena, such as turbulence 
generation, cannot be fully appreciated in the still pictures presented in this paper. 

3. Results 
In this section we shall often compare our results with those of experiments. All 

relevant experiments (i.e. in the turbulent regime) known to the author either 
involve vertical plates with Pr x 0.7 but no vertical stratification, or cavities with 
Pr 2 7 and generally large aspect ratios, but having stratified cores. The computa- 
tional results can only be compared with the first class of experiments near the wall 
where Prandtl-number effects are important and stratification is not, and with the 
second class only in the exterior regions of the boundary layer and core where 
Prandtl-number effects are small (because of turbulence), and aspect-ratio differences 
can be accounted for in comparing the important stratification effects. 

3.1. The approach to stationary $ow 
Figure 3(a-Z) (Plates 1, 2 and 3 )  displays details of the transient temperature and 
velocity fields from early times to stationarity. The colours red and blue respectively 
denote warm and cold temperature with values in between corresponding to the 
appropriate colours in the linear spectrum between red and blue. Also shown in the 
figure are 4 x enlargements of the boundary layer near the entry corner of the warm 
wall. As either active wall has a similar influence on the interior fluid, it suffices to 
describe only the heated boundary region. A simple scale analysis is used to describe 
the early transient process. Implicit in the following scaling is the assumption that 
the dimensionless boundary-layer thickness 6 is much less than unity for all values 
oft .  

Initially, as can be observed from figure 3 (a ) ,  heat is conducted from the hot wall, 
resulting in a heated layer next to the wall whose thickness grows as 

s - t i .  (3.1) 
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FIGURE 3 (a-d). For caption see Plate 3. 

PAOLUCCI 

Plate 1 

(Facing p.  238) 



Journal of Fluid Mechanics, kl. 215 

FIGURE 3 (e-h). For caption see Plate 3. 

Plate 2 

PAOLUCCI 
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FIGURE 3. Velocity and temperature fields at selected instances: (a) t = 3.10x10-5, (b) 5.20X10-5, 
(c) 8.07~10-~, (d) 1.09~10-~, (e) l.22x10-4, U, 1.33~10-~, (g) 1.61~10-~, (h) l.?3X10-4, ( i )  6.58X10-4, 
(j] 7.30~10-~, (k) 7.40~10-~, (I) 9.30~10-~. Also shown are 4 X  enlargements of the boundary layer near 
the starting comer on the hot wall. 

PAoLUCCl 
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For Pr < 1, the resulting buoyancy forces, in balance with the unsteady inertial 
forces, act to accelerate this layer in the vertical direction with a velocity of 

v - LprRat, (3.2) 

where the factor i is introduced to account for the fact that at this time the 
temperature difference between the wall and the core of the cavity is only $AT. Heat 
is also being convected vertically and the layer will continue to grow until the heat 
conducted in from the wall balances that convected away. This balance yields 

7 -  - 
(:a): (3.3) 

as the growth time for the thermal boundary layer, at which time the length and 
velocity scales become 

(3.4) 

and v - (WPrRa); ,  (3.5) 

respectively. The aspect ratio A is unity in our case. 
The boundary layer on the hot wall is evidently unstable, and at t w 1.4 x lop5 the 

first sign of an anomaly was detected in the thermal field at  y = 0.065. Owing to the 
resolution of figure 3(a ) ,  this infinitesimal disturbance cannot be seen at t = 
3.10 x (figure 3b) one can observe a sinusoidal 
disturbance of small amplitude which has grown substantially by t = 8.07 x 
(figure 3c).  In figure 3 ( d )  the waves begin to fold back in a distinctive ‘hook ’ pattern, 
first observed by Elder (1965b) in a slot, and by Mordchelles-Regnier & Kaplan 
(1963) and Fujii et al. (1970) on a vertical surface. The ends of the hooks are 
eventually re-entrained by the boundary layer, and this folding process continues as 
the flow propagates from the bottom of the plate to the top. The first occurrence of 
wave folding is observed at  y % 0.21, and it appears that full folding occurs by y w 
0.5. This folding process can be observed from figure 3(d-f). 

On closer examination, near the source of instability at  y w 0.065, the critical 
wavenumber is found to be near 1.0-1.2 x 102 and the critical wave speed near 
6 . 5 ~  lo3. It is noted that both the wavelength and wave speed increase 
approximately linearly with distance up the plate. The observed values for the 
location of instability, and the critical wavenumber and wave speed are in good 
agreement with the respective values of 0.056,97, and 7 x lo3 obtained from a linear 
analysis by TZUOO, Chen & Armaly (1985) for the semi-infinite vertical plate. The 
agreement is remarkable since in their case a leading edge is present at  the bottom 
of the plate, so that the bottom boundary conditions are different. 

Consider now the corner region where the rising flow is turned owing to the 
presence of the insulated top boundary. If we assume constant pressure where the 
rising flow is first turned, and use conservation of mass, it is possible to write a 
characteristic internal Froude number for the horizontal flow (see PC) : 

however, at  t = 5.20 x 

Fr = 0.125A)(PrRa)i. (3 .6)  

The flow is critical when Fr = 1. For Fr > 1 the flow is supercritical and may undergo 
an internal jump with an increase in depth of the flowing layer as it moves from 
supercritical to subcritical. As pointed out by Ivey (1984), by analogy with open- 
channel flow (Lighthill 1978), the energy loss associated with an internal jump is 
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dissipated in a stationary wavetrain downstream of the jump for 1 .O < Fr < 1.3, but 
for higher values of Froude numbers, these waves break, resulting in a disordered 
interface downstream. This scenario is consistent with the corner flow regions 
displayed in figure 3(a-h) as Fr x 2.1 in our case. It is noted that wave breaking is 
first observed in the computation a t  t x 1.8 x lop5. 

As time proceeds, from figures 3 (d)-3 (f) the boundary layers continue to break in 
a characteristic periodic pattern whose amplitude and wavelength remain approxi- 
mately linear in y. In  the meantime the heated and cooled intruding horizontal 
jets reach the opposing vertical walls a t  t x 1.51 x lop4. As the cold jet impinges on 
the hot wall, we see from figure 3(g, h) that the previously established boundary- 
layer structure is destroyed. As more and more fluid is discharged into the core of the 
cavity, the fluid there is set into relatively weak motion and a stable vertical 
temperature stratification starts to become apparent in figure 3 (i-Z). As the thermal 
stratification is established, the internal jumps, previously present in the emerging 
corners, now become effectively flooded, in agreement with Ivey's observation. A t  
this time, from figure 3(i-l), we also observe boundary layers having somewhat 
different structure than those present when the core was isothermal, but the presence 
of the hooks is still evident. As a wave propagates along the wall, a point is reached 
where a portion of the wave a t  the edge of the boundary layer is at a lower 
temperature than the interior of the boundary layer. It will thereby be decelerated 
and fall behind causing the characteristic hook. In  figure 3 ( j - Z )  the flow approaches 
statistical steady state ; however, we still observe periodic changes of the structure 
of the boundary layers, and intermittently the establishment of large coherent 
structures (as seen in figure 3j ,  k). A very peculiar result is that these coherent 
structures appear in pairs on the opposite walls. It is believed that this phase-locking 
mechanism can only be attributed to a characteristic dynamic pressure fluctuation 
which propagates through the cavity at infinite speed. 

From the results we make the following observations regarding the stationary 
flow : 

(a) Away from the walls the flow is fairly weak and the thermal field is stably 
stratified. The stratification is approximately linear, as seen from figure 4, with a 
slope of 

A d T  
28 dy 

/3 = -- = 0.38. (3.7) 

This result appears to be independen t  of Ra since it is in good agreement with the 
experimental results of Elder (1965b) who obtained /3 = 0.3-0.4for 10 < A < 30 and 
Pr = 7, Kutateladze et al. (1972b) who obtained /3 = 0.33 for A = 22 and Pr = 13.2, 
and Kutateladze et al. (1977, 1978) who obtained p = 0.36+0.04 for 8 < A < 26, 
Pr x 16. The agreement is not as good when comparison is made with the experi- 
mental result of Cowan et al. (1982) who obtained /3 = 0.54 using water as the working 
fluid and 1.5 < A  < 23. This disagreement is easily explained by noting that their 
result was obtained by correlating data for 1.51 x lo7 < Ra < 2.3 x loll. It is noted 
that the flow does not become fully turbulent until Ra x los and for lower values of 
Rayleigh number /3 is larger (see CP, and Kutateladze et al. 1978). Indeed, by 
considering only their data for Ra = 2.26 x lo1' and A = 1.5, a value of /3 = 0.41 is 
obtained, which is much closer to the result (3.7). A linear stratification is also known 
to occur in the laminar regime when Ra is large (see CP). That (3.7) is independent 
of the Prandtl number is not very surprising since Elder (1965a), in comparing 
laminar results for Pr = O.7-1Os, concluded that a t  best /3 is a weak function of Pr.  

user

user
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FIQURE 4. Mean temperature distribution a t  the mid-width of the cavity. 
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Mean temperature distribution a t  the mid-width of the cavity. 
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represents a linear approximation. 
The dashed line 

In the turbulent case it is expected that any Prandtl-number dependence would 
become even less important. What is surprising is that in strong turbulence p is 
independent of the Rayleigh number. 

( 6 )  Prominent features of the boundary layers are hook-like structures similar to 
the ones reported by Elder (1965b) in his experiments with water, and by Fujii et al. 
(1970) in spindle oil. The initial oscillations grow in amplitude as they propagate 
along the plate. The outer portion of the waves, which are in a region of slower 
moving fluid, curl over and, relative to the head of the wave front, are left behind. 
However, owing to a lower pressure behind the waves, these hook-like structures are 
re-entrained at the tail end, along with fluid from the interior, thus initiating a 
folding process which continues as the waves propagate along the plate. This process 
is disrupted when the vorticity within these structures becomes too large, causing 
them to break up. In figure 3 ( k )  we clearly see this folding process occurring near 
y = 0.5 on the hot plate. This scenario is in complete agreement with the detailed 
photographs shown in figure 16 of Fujii et al. (1970). 

( c )  Occasionally, a pair of vortices are generated (one on each active wall) which 
do not break up and are seen as very intense vortex rolls as they convect along the 
walls. These rolls, after negotiating the departing corners, are quickly diffused. In 
figure 3 ( k )  we can see a pair of fully developed vortices about to be discharged into 
the core of the cavity. 

3.2.  Heat Transfer 
A different perspective on the early transient flow is obtained by looking a t  figure 5 ,  
where the spatially averaged Nusselt numbers (Nu,,) and (Nu,) on each of the active 
walls are displayed together with their sum (Nu,) (note that (Nu,) is negative since 
heat flows out at  the cold wall). The brackets (...) denote averaging over the y- 
direction. By looking at  the record of (Nu,,) we observe that until t x 1.4 x 
which corresponds to the first observation of a perturbation in the boundary layer, 
the heat transfer is through conduction and decays as t-g as expected. At t x 
3.1 x lop5 the heat conducted in from the wall is balanced by that convected away 
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FIQURE 5. Average Nusselt numbers (Nu, ) and (Nu, ) on the active walls, and their sum (Nu, ) 
as functions of time. 

t ( x 1 0 - 4 )  

by buoyancy as manifested by a minimum in the heat transfer rate there. During the 
period of time from t x 3.1 x to t x 8 x lop6, which corresponds to the period of 
time when the perturbation on the boundary layer is sinusoidal and of small 
amplitude, the heat transfer rate increases slightly. However, for t x 0.8-1.0 x 
we observe an approximately linear increase in (Nuh)  during which time the 
amplitudes of the disturbances grow to a finite size. The peak in heat transfer near 
t x 1.0 x corresponds to the beginning of the wave-folding and breaking process. 
We note that for t > 1.0 x the heat transfer on the two active walls is unequal 
and becomes more so as time proceeds as evidenced by the record of (Nu,,). 

For Rayleigh numbers in the turbulent regime, it is well known that the average 
Nusselt number a t  a heated wall obeys the relation (e.g. Goldstein 1938; Jakob 1949; 
Elder 19653) 

<Nu) = CRUt 13.8) 

Expression (3.8) follows from the fact that since the boundary-layer thickness is 
much smaller than the width of the cavity, the heat transfer should be independent 
of L ,  When the computed flow becomes stationary, the following values of average 
Nusselt numbers and r.m.s. fluctuations are obtained (see figure 5 )  : (Nu,) = 99.54, 

= -98.96, QVGJ = 0.59, and u N U ,  = 10.02, uNu, = 10.70, u N u ,  = 15.63. TWO 
points are worth noting. First, the relatively small value of '(N.3 indicates that the 
heat transfer is stationary to within 0.6%, since ideally we would then expect 

= -- and <Nu,) = 0. Second, the r.m.s. fluctuations are of the order of 
lo%, and their timescales are relatively long (see figure 5 ) .  If the average Nusselt 
number between the two active walls is taken to be (Nu) = 99.25, from (3.8) we 
obtain 0.046 for the constant C. This value is compared in table 1 with experimental 
values obtained by the authors indicated. The agreement with the experimental 
values is excellent, and, as with the value of /3 in (3.7), the constant C appears to be 
independent of the Prandtl number and aspect ratio, since the experimental results 
were obtained for 1 < Pr < lo3 over the aspect ratio range 1 < A < 61. 

As first pointed out by Eckert & Carlson (1961), and more recently by Kutateladze 
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et al. (1977), the heat flux on the hot wall decreases with increasing longitudinal 
coordinate ; however, the dependence of the dimensionless heat transfer coefficient 
Nu, o_n the Rayleigh number Ra,, where both parameters are based on AT, = 
T,-T,, is the same as that for turbulent natural convection near an isothermal 
vertical plate : 

Note that while in the case of an isolated vertical plate T, is the constant ambient 
temperature, in the cavity it is a function of the vertical coordinate. It appears that, 
away from the cavity ends, since AT, also decreases with increasing longitudinal 
coordinate, the inner structure of the thermal boundary layer at  any fixed y is locally 
similar to that of an isolated plate. More will be said about this in the following 
section. The value of C' obtained from the simulation is 0.106 and is noted in table 1 
along with values obtained by others. It is noted that George & Capp (1979) 
obtained a value of C' from a scale analysis in conjunction with experimental data 
by others, while Kutateladze et al. (1977) obtained C' from experimental results in 
a differentially heated cavity. The values in parentheses attributed to Kutateladze 
et al. (1977), and Kirdyashkin et al. (1983), were obtained by the present author by 
differentiating their temperature distributions near the wall. All other values of C' 
were obtained experimentally from an isolated vertical plate. It is evident from the 
table that the result for C' is in general agreement with previously known values. 

To test the consistency of the calculations, we can approximate the temperature 
at  the mid-width of the cavity, away from the ends, by the equation (see figure 4) 

Nu, = m a ; .  (3.91 

-- AT, - 0.690-0.379~. 
AT (3.10) 

Following Eckert & Carlson (1961) (3.9) can be integrated to obtain the average 
Nusselt number in the form (3.8). The result of such calculation yields C' = 0.115 if 
C = 0.046 is assumed to be accurate. This value appears in parentheses in table 1. 
The slight variation between the two computed values of C' is expected since the 
temperature in the core was modelled with (3.10), and since some scatter also existed 
in the variation of%, with Ra,. 

3.3. Mean temperature and velocity 
Figures 6 and 7 show the mean temperature and velocity distributions at  the mid- 
height of the cavity. In  each of the figures the distribution across the cavity, and 
details near the hot wall are shown. Figures 6 (a )  and 7 (a)  reveal that large horizontal 
gradients exist in the boundary-layer regions but, as noted before, outside these, the 
horizontal gradients are essentially zero. Although not shown, we point out the 
presence of a very weak horizontal flow (due to entrainment by the boundary layers) 
whose sign is opposite to that of the vertical velocity, and whose average magnitude 
reaches an extremum near the exterior edge of the boundary layer of approximately 
3% of the maximum vertical velocity. The results are in agreement with Elder's 
(1965b) observation that the turbulent interior is a region of uniform mean 
temperature and zero mean velocity. The boundary layer region is shown in greater 
detail in figures 6(b) and 7(b). As can be seen from the figures, the boundary layers 
on the active walls are very thin at this high Rayleigh number, thus causing the 
problem to become stiff owing to the disparate lengthscales present. Upon making 
detailed comparisons with the corresponding laminar boundary layer, one further 
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FIGURE 6. Mean temperature distribution at the mid-height of the cavity: (a) complete 
distribution, ( b )  detail of the hot wall boundary layer. 

V 
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0 0.01 0.02 0.03 0.04 0.05 

FIGURE 7 .  Distribution of mean vertical velocity component at the mid-height of the cavity: 
(a) complete distribution, ( b )  detail of the hot wall boundary layer. 

X 

notes that the distributions in figures 6 ( b )  and 7 ( b )  are broader, especially in the 
exterior part of the layer. We shall elaborate upon this aspect later in the paper. 

Even though the time-averaged boundary-layer distributions of temperature and 
velocity are very smooth and well behaved, large fluctuations occur there. In 
figure 8 small samples of temperature and velocity records are shown at  six selected 
locations on the cavity mid-height. From the figure a few observations can be made. 
First, we note that well inside the boundary layer T and v are well correlated. Second, 
while the fluctuations of w are much larger than those of u well inside the boundary 
layer, the opposite occurs near the edge. This result is a direct consequence of the 
presence of a stable stratification in the core of the cavity which resists vertical 
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x = 0.002 x = 0.005 x = 0.015 

65 70 75 80 85 90 95 65 70 75 80 85 90 95 65 70 75 80 85 90 95 I 

t ( x  10-6) 

FIGURE 8. For caption see facing page. 

I0 

motion. Also note the intermittent character of T and v a t  the edge of the layer. 
Lastly, we note that the time samples shown in figures 5 and 8 include time values 
of the temperature and velocity fields in figure 3 (j-1). The large fluctuations caused 
by the large structure, noted in figure 3( j ,  k), can be clearly seen in figures 5 and 8 
near t x 7.4 x Note that its influence extends to the edge of the velocity 
boundary layer. The samples shown in figure 8 have similar characteristics to those 
observed by Kirdyashkin et al. (1983) in a cavity for Pr x 12, and by Fujii et al. 
(1970) on a vertical surface for Pr = 69. 

Eckert & Carlson (1961), and Kutateladze et a2. (1977) noted that the inner 
structure of the thermal boundary layer is locally similar to that of an isolated plate. 
More recently, George & Capp (1979), using classical scaling arguments, presented a 
theory for turbulent natural-convection boundary layers next to heated vertical 
surfaces. They showed that the boundary layer must be treated in two parts: an 
outer region, in which the viscous and conduction effects are negligible, and an inner 
region, in which the mean convection terms are negligible. The inner layer, which is 
identified as a constant heat flux layer in the sense that the total heat flux across the 
layer is independent of the distance from the wall, consists of two regions: a 
conductive and viscous sublayer, in which the temperature is linear and the velocity 
approximately linear next to the wall; and a buoyant sublayer outside of it, where 
the mean velocity and temperature profiles depend on the cube root and inverse cube 
root of distance from the wall, respectively. In figures 9 and 10 the computed mean 
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FIQKJRE 9. Plot of mean temperature at the mid-height of the cavity in the vicinity of the hot wall; 
B is defined by (3.11). The lines correspond to (3.12) and (3.15) with the constants reported in table 
1, while the points denote the computed mean temperature a t  their respective grid location. 
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FIUURE 10. Plot of mean vertical velocity component a t  the mid-height of the cavity in the vicinity 
of the hot wall; V, is defined by (3.11). The lines correspond to (3.18) and (3.19) with the constants 
reported in table 1 ,  while the points denote the computed mean velocity at their respective grid 
location. 

( X h Y  

temperature and velocity distributions, T and V respectively, are plotted in the inner 
region at the mid-height of the cavity using the following scales: 

(3.11) 

where q = (&AT, L3/a2)-i is the dimensionless thermal (inner) lengthscale. Note 
that Th and T' are dimensionless in (3.11) and, because of symmetry, Tm = 1 and 
q = (PrRa)" at the cavity mid-height. The symbols in the figures represent 
computed grid locations, while the curves represent best fits of the numerical data 
using the functional forms suggested by George & Capp. Values of constants 
C,, i = 1 , .  . ., 6, presented below are recorded collectively in table 1 together with 
those that the present author was able to extract from the experimental works listed 
in the table. The exceptions are the results of George & Capp (1979), where they 
themselves obtain the constants using experimental data of Cheesewright (1968), 
Fujii et al. (1970), and Smith (1972). From figure 9 we see that in the range 
0 < x / q  < r! a uniform mean temperature distribution corresponding to the linear 
equation 

e = i-cl($ (3.12) 

is obtained with C, = 0.118. This region is the conductive sublayer. Using a simple 
analysis along with their experimental data and that of Cheesewright (1968), 
Kutateladze, Kirdyashkin & Ivakin (1975) show that the conductive sublayer should 
extend through 

r! = 3.91PP. (3.13) 

The resulting estimate for the range is in excellent agreement with our result of 3.3 
for P r  = 0.71, and Elder's (19653) estimate of 137 for Pr x lo3. The constant C,  is a 
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direct measure of the heat flux at the wall. Indeed it can be easily shown that if C’ 
is universal (as the data in table 1 indicate), then using (3.9) with (3.12) the following 
Prandtl number dependence for C, is obtained: 

c, = C‘Pd (3.14) 

If the value of C‘ = 0.106 is used, then the value of C, resulting from (3.14) is in good 
agreement with those listed in the table, with the exception of the value obtained 
from Elder’s data which is approximately a factor of two smaller. It is not clear what 
the reason is for this large discrepancy; however, Kirdyashkin et al. (1983) very 
clearly show that substantially lower values of C‘ could result for Rayleigh numbers 
in the transition regime. Additionally, the Prandtl number used in Elder’s 
experiment is not known very accurately. 

Outside the sublayer, in the mixing region, the thermal field has the following 
behaviour : 

e=c, - -c,, (3’ (3.15) 

which is accurate in the range r! < x/q < ri with C, = 2.406, C, = 0.943, and rz = 13. 
Using our result along with Elder’s (1965b) experimental result for Pr x lo3 the 
following estimate for the external edge of the boundary layer is obtained: 

ri = 15.43Ph. (3.16) 

George & Capp (1979) conclude that C, is a function of Prandtl number while C, is 
a universal function. The Prandtl-number dependence of C, appears to be weak; 
indeed using our data with those of Elder (1965 b)  and Kirdyashkin et al. (1983) we 
obtain 

C, = 2.35Ph. (3.17) 

In addition, as noted from table 1, it appears that the value of the ‘universal’ 
constant C, in the cavity is approximately a factor of three larger than that for an 
isolated plate. This difference must be attributed to the presence of a stable 
stratification exterior to the mixing layer which was not accounted for by George & 
Capp. Note that the value of C, obtained from the data of Kirdyashkin et al. (1983) 
for Pr x 12 and Elder (1965b) for Pr x lo3, differ by 4% and 15%, respectively, 
from our value obtained for Pr = 0.71. 

As can be seen from figures 9 and 10, the conductive sublayer encompasses both 
the viscous sublayer, approximately given by 

(3.18) 

with C, = 3.89 and valid in the range 0 < x/q < ry with r r  = 1.5, and the momentum 

(3.19) 

with C,  = 13.63 and C, = 8.77 in the range rr < x / q  < r:, where r: = 3.3. The 
constant C, = r,/p(Pg ATm a); represents the friction coefficient and is expected to be 
a function of the Prandtl number. For an isolated vertical plate and Pr x 16, 
Kutateladze et al. (1975) used their results and those of Cheesewright (1968) to obtain 
the following Prandtl-number dependence : 

C, = 5.2PG. (3.20) 
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The value of C, obtained in the numerical simulation (see table 1) differs by 
approximately 13y0 from the result obtained from (3.20). In the momentum 
buoyant sublayer George & Capp (1979) note that C, should depend on the Prandtl 
number, while C, is expected to be a ‘universal’ function. We are unable to provide 
an estimate for the Prandtl-number dependence on C, owing to lack of data for fluids 
with Prandtl number larger than unity; however, it is expected that C, should 
depend on the stratification. We point out, however, that values of C,  and C,  
obtained from the simulation are in good agreement with those reported by George 
& Capp for an isolated plate, thus indicating that the dependence on the stratification 
of C, is weak. Since the momentum buoyant sublayer is inside the conductive 
sublayer, it is not affected by the stable stratification present in the core of the 
cavity. Because of this stabilizing effect, the conductive sublayer extends 
approximately three times further from the wall than in the case where the 
stratification is absent. Thus, while the thickness of the conductive and viscous 
sublayers, and the thermal and momentum buoyant sublayers coincided in the 
isolated vertical plate, they do not in the vertical cavity, owing to the presence of a 
stable stratification in the core. However, in both cases the viscous sublayer extends 
to approximately the same distance from the wall (George & Capp report ry = 1.7). 
We remark that the distributions (3.12) and (3.18) are the same as those derived from 
an asymptotic analysis of the turbulent boundary layer by Plumb (1976). Finally, we 
note that while it is possible to find logarithmic regions in the buoyant sublayers, the 
-f and +$ distributions given by (3.15) and (3.19) fit the numerical results better 
and hold over a larger region. 

As a direct result of the mixing outside of the viscous sublayer, the location of the 
velocit maximum xM = 4.649 x and the momentum boundary-layer thickness 
8, = j; (V/VM)dx = 1.214 x lo-*, are approximately 18% and 40% larger than the 
corresponding laminar ones, given by xM = 1.3(A Pr/Ra)a and S, = 2.1(A/PrRa)f (see 
C P  and PC). However, the velocity maximum VM = 2.159 x lo4 is still predicted 
within 1.5% by the correlation 

V, = 0.26(A PrRa); (3.21) 

which is valid in the laminar regime ! Using experimental results for the vertical flat 
plate for 0.7 < Pr < 17, and for the vertical slot for Pr x 16, Kutateladze et al. 
(1972 a ,  b)  obtained the behaviour of the product VM xM as a function of the Prandtl 
number and the stratification exterior to the boundary layer. Their results can be 
combined and recast in the form 

VMx, x 200Pr~(l-1.0~-0.8p2), (3.22) 

where @ is defined by (3.7). Using the above equation with (3.21), xM can be 
estimated. The resulting value is found to be within 17% of the value obtained 
numerically. 

As suggested by George & Capp (1979) for the isolated vertical plate, and 
Kutateladze et al. (1977) for the vertical slot, the vertical velocity distribution 
exterior to the maximum should only scale with the boundary-layer thickness 

Y 

V 
- = f, (T), 
VM 6, 

(3.23) 

although the distribution is expected to be different in the two cases. In figure 11 
such a distribution obtained from the numerical simulation is compared with 
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FIGURE 1 1 .  Mid-height vertical velocity distribution exterior to the maximum. The line is the 
result of the simulation, while the symbols are experimental results of Kutateladze et a2. (1977). 

experimental data obtained by Kutateladze et al. (1977) for 8 < A < 26 and Pr x 16. 
As can be observed from the figure, the agreement is good. Furthermore, we note 
that since the data of Kutateladze et al. were obtained a t  different vertical locations 
for the different aspect ratios, the velocity profiles in the outer part of the boundary 
layer are self-similar in the above coordinates. From the numerical results we find 
that the distribution is approximated by 

- - exp [- 0.947 (;y.4321 - , (3.24) 

with a correlation coefficient of 0.9994. George & Capp (1979) also theorized that the 
temperature profile in the outer region of the boundary layer depends on the same 
scaling. However, such a region, if it exists, must be very small in our case since the 
temperature a t  the edge of the -; region is already very near to the core value of 
unity. This difference is attributed to the presence of a stable stratification in the core 
of the cavity, since in the vertical flat plate 0 x 0.2 at the edge of the boundary layer 
(see Siebers et al. 1985). 

3.4. Correlations and r.m.s. fluctuations 
The intensities of velocity and temperature fluctuations in the hot-wall boundary- 
layer region at y = &4 are shown in figures 12 and 13 using different scales. From 
figure 12 we see that near the wall the fluctuations are highly damped and approach 
zero on the wall itself (note that (el')i = (T'a)+/AT,). In  fact from figure 13 we observe 
that in the vicinity of the wall the r.m.s. temperature and vertical velocity 
fluctuations approach zero a t  rates of 2.5 and 5.5 times faster than those of the 
respective averages. The rate of decay of the vertical velocity fluctuations near the 
wall is in good agreement with the experimental result (v'")i/V x 0.2 obtained by 
Cheesewright & Ierokiopitis (1982) from an isolated vertical plate immersed in air. 
Furthermore, Kirdyashkin et al. (1983) obtain (p)'/( 1 - 0 )  x 0.3 for the rate of decay 

9 FLM 216 
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FIQURE 12. Distributions of turbulent r.m.s. fluctuations a E h e  mid-height of thecavity and in 
the vicinity of the hot wall: -, (8'2);. ---- (U'2)t/vM; ----, (,-),t/yM. 
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FTQURE 13. Distributions of turbulent r.m.s-fluctuations at themid-height of the 
the vicinity of the hot wall: -, ( 8 ' 2 ) t / ( l - ( j ) ;  ----, (U'2)t/V; --__ 

c a v a  and in 
-, (v'Z)f/V. 

of temperature fluctuations near the wall of their cavity, and observe that the rate 
of fluctuations drop off monotonically away from the wall, in qualitatite agreement 
with figure 13. We observe that the quantitative difference between their result of 0.3 
and our result of 0.4 is due to the difference in our respective Prandtl numbers. 

As we move away from the wall, the fluctuations increase sharply until, as shown 
in figure 12, they reach a maximum near xM where the mean vertical velocity is a 
maximum (see figure 7) .  There, the amplitude of the temperature and vertical 
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FIQURE 14. Distribution of mean turbulent kinetic energy at  the mid-height of the cavity and 
in the vicinity of the hot wall. 

X 

velocity fluctuations are approximately 18% and 17% of the average values, 
respectively. The magnitude of the maximum temperature fluctuations and its 
location relative to the wall are in good agreement with the experimental results of 
Kutateladze et al. (197F 1978) and Kirdyashkin et al. (1983) who, using 96 % ethyl 
alcohol as the working fluid in a slot of aspect ratio 11.3, obtained a maximum of 
approximately 16 % near x x 5 x low3. However, their maximum r.m.s. fluctuations 
for the vertical velocity component is approximately 35 YO, which is much greater 
than ours, and occurs near the location of their maximum velocity (consistent with 
our observation), which is approximately twice as far from the wall as their location 
of maximum temperature fluctuations. The difference in our results can be explained 
if the thickness of the viscous sublayer rr (and subsequently r;) is a stronger function 
of Prandtl number than the thickness of the conductive sublayer r! which increases 
with Pri. Unfortunately, no data are available to estimate the Prandtl-number 
dependence of rr. 

Moving further away from the wall to the edge of the boundary layer, we note from 
figure 12 a local maximum of approximately 15% in the r.m.8. fluctuations of the 
vertical velocity. From the figure we observe that the location of this maximum a t  
x z 0.0263 coincides with a corresponding maximum of approximately 9% in the 
horizontal velocity fluctuations. The high intensity of velocity fluctuations in this 
region indicates that a high degree of mixing occurs. Thus, it appears that most of 
the mixing occurs a t  the exterior edge of the boundary layer. The presence of the two 
maxima - is also apparent in figure 14 where the mean turbulent kinetic energy k = 
+ui u; is plotted as a function of x. This outer mixing region isolates the core from the 
stabilizing influence of the walls in the horizontal direction, while providing random 
finite-amplitude disturbances to the interior. We note that the r.m.s. disturbance 
temperature and vertical velocity distributions shown in figure 12 are in good 
qualitative agreement with eigenfunctions obtained by Gill & Davey (1969) from a 
linear stability study of the buoyancy layer in the presence of a uniform stable 

9-2 
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vertical temperature gradient. This agreement suggests that the linearly unstable 
modes may retain the same qualitative character well beyond the range of validity 
of the linearized theory. 

To better understand the mechanisms of energy transfer, we write the turbulent 
boundary-layer equations governing the mean flow 

= 0,  3 
axt 

( - ::) a --(uie) =- -u’e+- , axi ax 

(3.25) 

(3.26) 

(3.27) 

and the turbulent kinetic energy (k = $; u;) and squared temperature fluctuations 
(q  = p z )  

-_ a -  a - -  a2L RuPr,, ?av &;av; 
- ( ui k) = - - (u’p’ + u’k) + Pr - + - e -u --P~---, (3.28) axt ax axfax, 2 ax ax,ax, 

(3.29) 

The left-hand sides and the first two terms on the right-hand sides of (3.28) and (3.29) 
are terms that become zero when integrated over the whole flow. They represent the 
transfer of energy from place to place by the mean motion and by the turbulence 
itself. The last terms on the right-hand sides are always negative and thus represent 
viscous and conductive dissipation of turbulence, respectively. The input of energy 
to compensate for the dissipation must be provided by the two terms remaining on 
the right-hand sides of (3.28) and (3.29). 

In figure 15 we display the computed turbulent] shear stress and heat fluxes 
normalized in an appropriate fashion. In  forced convection, the Reynolds - stress 
correlates very closely with the mean vertical velocitygradient as -u’v’ > 0 when 
aV/ax > 0 and -m < 0 when aV/ax < 0. Therefore, -u’v’ usually becomes positive 
in the near-wall region of aV/ax > 0. However, the Reynolds stress near the wall in 
natural convection is almost zero in spite of aV/ax > 0. Upon integrating (3.26) from 
0 to x and solving for -a, we see from figure 15 that the buoyancy contribution 
nearly cancels the contribution due to viscous diffusion. As the location of maximum 
vertical velocity is approached, the buoyancy contribution increases faster than the 
viscous diffusion term, leading to  a decrease in --. Consequently, the maximum 
- velocity location xM (where aV/ax = 0) does not coincide with the location of 
u’v’ = 0. The outer layer has the same characteristic as the forced-convection 
boundary layer since there aV/ax < 0 and -a < 0. From figure 14 and (3.28) we 
see that the double-peak behaviour of the turbulent kinetic energy is closely tied to 
the behaviour of the source term v”. This term is dominant where aV/ax x 0 (i.e. 
near the location of maximum velocity and near the edge of the boundary layer). 
From figures 14 and 15 we see a direct correspondence between the maxima in v” 
and those in &. In between the peaks in I, aV/ax is not zero, and so the more 
complicated behaviour results from the balance of both source terms with viscous 
dissipation. 
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FIQURE 15. Distributions of Reynolds stress and turbulentheat fluxes at *mid-height of the 
cavity and in the vicinity of the hot wall: -, -u'v'/PM; ----, -u'V/V,; ----, 
-vle/v,. 

Similarly, upon integrating (3.27) from 0 to x and solving for the turbulent heat 
flux --'el, we see that near the wall the advection term is small and so -m 
decreases largely in accordance with the thermal conduction term. From (3.29) we 
see that - u ' 8  aO/ax is a source of squared temperature fluctuations q. Note that this 
source is much larger than the other source term -V'B'ae/ay since aO/ax % W/ay in 
this region. Therefore, from figures 12 and 15 we see that the maximum intensitty of 
temperature fluctuations occurs near the location where - U.8.aO/ax is maximum. 
The value of -U.8. becomes a minimum with the increase of the advection term in 
the vicinity of the maximum vertical velocity location xM (see figure 7) ,  and then 
increases toward zero at the outer edge of the boundary layer, where advection and 
diffusion balance. The distribution of squared temperature fluctuations is a little 
complicated as the edge of the boundary layer is approached since aO/ax becomes 
comparable with aO/ay in this region, and so both source terms contribute in the 
balance with the diffusion term. The distribution of -- is similar to that observed 
in forced convection. 

For x > 0.065 turbulence production is small but not insignificant, since in that 
region the mean velocities are zero and the mean temperature is constant in the 
horizontal direction. The r.m.8. velocity fluctuations in the core of the cavity are 
small and relatively constant as hinted by figure 12. At the centre they are 
(U'");/lv, x 0.024, and (p)i /VM x 0.011. The temperature fluctuations in the same 
region are also approximately constant but less than 1 % ((el"); x 0.002), indicating 
that the thermal fluctuations are highly damped by the stable vertical stratification. 

From integrals of the autocorrelation coefficients of T, u, and v ,  we have obtained 
respective estimates for the integral timescales (measured on a diffusion timescale) a t  
several locations on the mid-height of the cavity. Consistent with expectations, the 
resulting estimates vary from approximately 2 x in the vicinity of the active 
walls, to 4 x in the centre of the cavity. Based on these estimates, we see that 
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the sampling period (at statistical steady state) encompasses from approximately 
140 eddy turnovers near the active walls to 7 turnovers near the centre. 

3.5. Probability density and energy spectra 
In figure 16 the calculated probability density distributions of temperature and 
velocity are shown a t  selected locations on the mid-height of the cavity. P(g) is 
normalized such that $!: P(g)  dg = 1 .  Greater intensity of fluctuations is indicated 
by the greater width of a distribution and correspondingly smaller values of P .  This 
is clearly seen by identifying the locations of distributions with those in figures 
12-14. Thus, as observed previously, fluctuations in the sublayer and mixing region 
are the strongest. From the distributions of temperature fluctuations we see that 
fluid in the outer portion of the boundary layer does not penetrate beyond the 
boundary of the buoyant sublayer. Note further that both in the core of the cavity 
and in the middle of the mixing region the probability distributions are symmetrical. 
As the wall is approached, the distributions become more and more asymmetric 
owing to intermittency of the flow, and finally develop a bimodal character arising 
from the oscillatory nature of the folding process. Except for presence of a bimodal 
distribution close to the walls, the results for P ( T )  are in qualitative agreement with 
those of Elder (19656) and Kirdyashkin et al. (1983). Note that the presence of a 
bimodal distribution depends not only on the location within the cavity, but also 
requires good resolution in the measurements. 

To the author’s knowledge, no experimental probability distribution is available 
for velocity. From figure 16 we see that P(u)  remains fairly symmetric about u = 0 
and is broadest near the edge of the boundary layer where the horizontal fluctuations 
are largest (see figure 12). We also observe that the periodic oscillations due to the 
folding process are felt very close to the wall and result in the bimodal distribution 
of P(v)  there. P(v)  remains fairly broad and retains the multimodal character as the 
edge of the boundary layer is approached. However, note that near x = 0.03 the 
vertical velocity fluctuations are highly damped by the stable stratification, resulting 
in a peaked bimodal distribution with a zero mean near that location. From the 
distribution of P(u)  and P(v )  near the centre of the cavity we note that while the 
means of both velocity components are zero, the fluctuations are not. Furthermore, 
owing to the stable vertical stratification, the horizontal fluctuations are sub- 
stantially larger than the vertical ones, as expected. 

The spectral densities of temperature and velocity fluctuations are shown in 
figure 17 a t  the same selected points. From the figure we observe that even though the 
spectra are continuous, dominant peaks occur near frequencies of 11 650 and 90300. 
These frequencies have been shown by P C  to correspond to the characteristic 
frequencies of internal waves and boundary-layer instability, respectively. Owing to 
the presence of the stable stratification in the core of the cavity and the large vertical 
velocity next to the active walls, fluctuations in the velocity field are constrained. In 
the core of the cavity, the flow can only execute low-frequency fluctuations since it 
is removed from any source of turbulence in addition to feeling the full impact of the 
stratification. As we move towards the vertical walls, the longitudinal component of 
velocity can only perform low-frequency oscillations in the middle of the boundary 
layers since it has to overcome the stabilizing effects of stratification and viscous 
damping, while the horizontal component oscillates a t  higher frequencies in the 
mixing region since it only has to overcome damping effects due to the wall. Owing 
to wall damping, the energy at the lowest frequencies decreases as the wall is 
approached, explaining our previous observation that the maximum amplitude of 
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FIQURE 17. For caption see facing page. 

fluctuations of the horizontal component of velocity occurs substantially further 
from the wall than that for the vertical component. The velocity fluctuations are 
clearly felt by the temperature field as evident from the figure. 

Our results, which are for Ra, = 1.25 x lo9, are consistent with the experimental 
data of Kirdyashkin & Semenov (1984). At Ra, = lo8 their results show a local 
minimum in the temperature energy spectrum between the low- and high-frequency 
peaks. At Ra, = 9 x 1O1O this minimum disappears resulting in an approximately 
constant energy region between these two characteristic frequencies. No spectral 
data for velocity are given in their work. 

We note that the high-frequency turbulent energy, which is generated near the 
active walls a t  small scales, cascades towards low-frequency large scales in the core 
of the cavity. This process is in accord with the two-dimensional turbulence picture 
of Kraichnan (1967) and Lilly (1969) who show that in inviscid isothermal flow the 
cascade of energy is mainly toward low wavenumber in the inertial range, and 
becomes weak or non-existent a t  higher wavenumbers where only vorticity variance 
or enstrophy is cascaded in the usual sense in the inertial range. 

4. Conclusions 
Convection flow in a vertical layer for Rrtyleigh numbers in the turbulent regime 

passes through several stages. I n  the lower part of the cavity, next to  the heated wall, 
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FIQIJRE 17. Temperature and velocity energy spectra at the mid-height of the cavity at 

x locations labelled on the figure. 

the boundary-layer flow has a laminar character. This region is immediately followed 
by transition and finally by a turbulent boundary layer. The space between the 
vertical boundary layers is filled by a virtually immobile stably stratified fluid 
executing low-frequency, low-velocity oscillations. This central core is continually 
stirred by random buoyant elements of finite energy which are discharged into it. 

It was shown that the thermal and momentum boundary layers can each be 
characterized by three regions. Directly against the wall there are the conductive and 
viscous sublayers, where the heat flux is constant but the shear stress is not. In these 
regions we see a monotonic rise in the intensity of fluctuations. These regions are 
followed by the momentum and thermal buoyant sublayers whose variation with 
distance from the wall depend on +$ and -6 powers, respectively. Thermal energy 
transferred by conduction accumulates in the thermal sublayer giving rise to 
fluctuations which constitute a considerable part of the heat transfer. Exterior to the 
mean vertical velocity maximum we have shown that the velocity distribution is self- 
similar. In  this strong mixing region wave-like structures are superimposed on the 
mean motion. As elements of these structures accelerate out of the region a local 
reduction of the thermal energy is observed. The elements move sufficiently rapidly 
out of this highly intermittent region for molecular processes to be negligible. The 
external part of the thermal boundary layer is characterized by a small value of 
excess mean temperature. 

The stable stratification of the fluid outside the boundary layers significantly 
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affects the nature of the flow, but has no effect on the heat transfer and momentum 
in the conductive and viscous sublayers. 

An attempt was made to compare predictions with available experimental 
evidence. It was seen that many of the computational results could be substantiated 
either directly or upon replotting data available in the literature. In particular, the 
heat transfer law, the vertical stratification in the core, the viscous and conducting 
sublayers, the existence of momentum and thermal buoyant sublayers, and the 
self-similar distribution of the outer boundary-layer region are in good quantitative 
agreement with available data. Many of the features observed in the flow such as the 
sinusoidal mode of instability, the internal jumps in the departing corners, and the 
hook-like structures have been observed experimentally. However, the validity of 
many other results can only be verified when more experimental data becomes 
available. 

Finally, we must note that some of the results obtained in the present work may 
be applicable to other turbulence problems where buoyancy and stable stratification 
play essential roles. For example, it was first noted by Elder (1965b), upon dose 
inspection of the ideas of thermal turbulence proposed by Priestley (1959), that the 
angles between the directions of gravity and mean heat flux are not invoked. Priestley 
argued that for fully turbulent free convective flow from a flat surface there must 
exist a region of the flow following a constant heat flux layer which is characterized 
only by the heat flux, the buoyancy parameter, and the distance from the surface. 
It follows immediately on dimensional grounds that the profile of temperature in this 
region must depend on the inverse cube root of the distance from the wall. Although 
Priestley’s arguments were made in connection with atmospheric flows, Elder realized 
the applicability of the results to a differentially heated cavity. 

A portion of these results were presented by the author a t  the American Physical 
Society/Fluid Dynamics Division Annual Meeting held in Tucson, Arizona, 24-27 
November 1985. I would like to thank Dr D. R.  Chenoweth for invaluable discussions 
on some aspects of this work. This work was performed under the auspices of the US 
Department of Energy by Sandia National Laboratories, Livermore, California, 
under Contract No. DE-AC04-76DP00789. 
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